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I\TRODUCTION 

Au ,v(‘(‘t K,, I I model of the radiative transfer process, includ- 
ing scattermg and absorption, isessential to the calculation of 
radiative heat transfer in many engineering systems. To 
bridge the gap between the mathematical complexity of exact 
radiative transfer theory [l] and the need for concise 
engineering formulas, the two-flux model was developed 
[2, 31 and has received widespread attention. However, 
one important consideration has been largely overlooked, 
namely, the problem of relating the two-flux parameters to 
fundamental optical properties of the constituent particles, 
without using any adjustable or empirically-derived 
constants. 

After its initial development [2, 3] and subsequent exten- 
sion to absorbing-emitting media [4], the two-flux model 
has further applied to scattering media through the simple, 
but often unrealistic, assumption of isotropic scattering 
[5-71. To account for anisotropic scattering, a variation of 
the two-flux model, which utilizes two-point Gaussian 
quadrature [l] was introduced [8.9]. Anisotropic scattering 
was also considered in several earlier experimental studies 
[lo-121. 

Daniel et crl. [13] have compared the predictions of the two- 
flux model with results of exact theory for radiation in 
shallow ponds and concluded that, at least in that situation, 
the two-flux model was unsuitable. The main disadvantage of 
the two-flux model, it was noted, is its lack of ability to 
represent the step-change of refractive index at the air-water 
interface, which gives rise to a rather pronounced anisotropic 
distribution of intensity due to total internal reflection of rays 
past the critical angle. Since not all engineering systems 
exhibit boundaries of this kind, the utility of the two-flux 
model has by no means been discredited in general. It is also 
important to note that the conclusions in ref. [13] were based 
on local volumetric absorption values rather than global 
transmittance or reflectance values. which tend to have more 
significance for heat transfer applications. 

More recently, Tong and Tien [14] have attempted to use 
only basic constituent properties and the electromagnetic 
scattering theory to predict the two-flux parameters, includ- 
ing the two-flux scattering and absorption coefficients as well 
as the back-scatter fraction, for thermal radiation in fibrous 
insulation. However, the expression for the back-scatter 
fraction was taken from a frequently-encountered alternative 
development of the two-flux model [15], which does not 
relate the back-scatter fraction to the single scattering phase 
function in a manner consistent with the semi-isotropic 
assumption of the original two-flux model. In addition to the 
two-flux model, the linear anisotropic model of Dayan and 
Tien [16] offers another approximate solution of the com- 
plete transfer problem. Tong and Tien [17] have compared 
calculations of the linear anisotropic model with those of the 
two-flux model and concluded that although intermediate 
parameters may sometimes vary appreciably between the 
two, the total predicted heat flux is usually very nearly the 
same for both cases. 

In this study, an attempt IS made to assess the predictive 
capability of the two-flux model without relying on any 
empirical or adjustable constants. Predictions of the two-flux 
model are compared with those of exact radiative transfer 
theory to determine the influence ofoptical depth and particle 
size parameter on the accuracy of the two-flux model. 

ANALYSIS 

The traditional two-flux model, based on the assumption of 
semi-isotropic intensity distribution, is obtained by integrat- 
ing the complete transfer equation for azimuthally symmetric 
radiation in a l-dim., plane-parallel slab [I], 
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For the nomenclature, p is the directional cosine with respect 
to coordinate z perpendicular to the slab, I the radiation 
intensity, 0 the scattering coefficient, (I the absorption 
coefficient, and p the scattering phase function. The super- 
scripts + and - refer to forward (p > 0) and backward (p < 
0) directions, respectively. The bar quantities denote hemi- 
spherically integrated values, in accordance with the two-flux 
model. 

The two-flux scattering and absorption coefficients can be 
expressed as 

Cr = 2Bu = 3BQ,f,,i’d; i = 20 = 3Q,f,,;‘d (4) 

where Q, and Q, are the single particle scattering and 
absorption efficiencies, d is the particle diameter, and f, 
represents the particle volume fraction. The third parameter 
of the two-flux model, the back-scatter fraction B is formally 
defined as 
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where the phase function for the l-dim. plane-parallel slab is 
related to single-particle scattering phase function p(O) [l] 
as: 

(6) 

with H being the angle between the incidence and the 
scattering directions for the spherical particle. Equation (5) 
was evaluated by numerical integration [18] of the Mie 
scattering solution as a function of the size parameter, Y = 
ndii., with 1. being the wavelength. Because of the large values 
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FIG. 1. Two-flux predrctions vs optical depth for II = 1.21 and 
(‘,<I = 1.0: (a) .Y = 1.0: (b) Y = 50. 

of .Y covered, it was not particularly conventent in this case to 
utilize a Legendre polynomial expanston for p(B) with exact 
Gaussian quadrature as is customarily done with systems of 
‘smaller’ particles (.Y _ 1) which have quast-isotropic phase 
functions. To do so and still cover a broad range ofvalues for 
I would result in a prohibitively large number of terms in the 
expansions for p(0). Naturally the numerical integration was 
verified to make certain that numerical errors did not 
inadvertantly lead to violation of conservatton of energy. 

The form of the two-flux equations appearing m equations 
(2) and (3) is suitable for a slab with diffuse incidence. Since 
the calculations presented here were performed in con- 
junction with an experimental study [18,19] whichemployed 
collimated incidence and reflecting boundaries, the two-flux 
equations were recast in terms of the scattered component of 
intensity with the collimated unscattered component appear- 
ing as a source term in the equations [l]. The solution of the 
resulting simultaneous equations is straightforward. For 
exact results the method ofdiscrete ordinates was applied to 
solve the transfer equation. A complete discussion of this 
method can be found elsewhere [1X, 201. 

RESL’LTS AND DlSCUSSION 

It has been suggested that the two-flux model is invalid 
when the single scattering phase function is strongly aniso- 
tropic [13]. It has also been suggested [21] that the two-flux 
equations need to be multiplied by a constant 2’\;3 in order 
to agree with the optically thick diffusion approximation, i.e. 
T,] >> 1 where T(, = (u + (0 L and L is the slab thickness. To 
characterize the inihtence of the optical depth r0 relative to 
that of the phase function on the reliability of the two-flux 
model, comparative calculations were made while systemati- 
cally varying the values of r0 and .Y. Figures I and 2 
demonstrate these results. 

In Fig. l(a). r0 ts varied from 0.1 to 100 while I is fixed at a 
value ofone. The phase function is rather moderate (B = 0.43) 
and the two-flux results are in error by at most lo’:, over the 
entire range of r,,. In Fig. I(b). however, for the same region of 
r. but for Y = 50, the slab retlectance is over-predicted by as 
much as 40”, (even at smaller r,,) and transmittance is under- 
predicted by approx. 30. 50”,, for r(, 2 2.0. It should be noted 
that the main difference between these two cases is that for 
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FK,. 2. Two-flux predictions vs size parameter for 11 = 1.21 
and ,:I,~ = 1.0: (a) T,, = 1.0: (b) z0 = 10.0. 

x = 50, the scattering becomes very strong in the forward 
direction (E = 0.14). 

On the other hand, Ftg. 2 shows transmittance and 
reflectance plotted as a function ofz, with rcl as a parameter. 
In Fig. 2(a). r,) = 1.0 and in Fig. 2(b). r,] = 10.0. In both cases, 
now, it is evident that as .v- increases beyond the value of one, 
the accuracy of the two-flux model diminishes substantially. 
The significance of large values of .Y is that B decreases 
markedly for Y greater than one. 

The dips in the values of R near .Y = 10 are a result of the 
fact that as Y + I the strong forward spike in the phase 
function which eventually accounts for the Fresnel diffraction 
pattern must be removed from consideration as scattered 
energy in order for the method of discrete ordinates to predict 
accurate results for large values of z. For z ) 10, the forward 
scattering spike was removed from the phase function, 
corresponding to the limit Q, + 1 as .Y + I, For .Y i 10, the 
usual method was followed with both the numerical in- 
tegration of p(B) and the Legendre polynomial techniques 
producing exactly the same results. This means, of course, 
that there is uncertainty in the accuracy ofeven the method of 
discrete ordinates in the transition region between the Mie 
range (_v - 1) and the geometric limit (Y + ,) and this 
problem is now being considered. 

SUMMARY 

Predtctions of radiative transfer using the two-Hux model 
have been compared with those of exact theory. No adjust- 
able coefficients have been employed and thus, the predtctive 
capability of the two-flux model using only fundamental 
properties of the system has been examined. Although similar 
studies have been conducted in the past. it has never been 
made clear whether acute anisotropic single scattering or 
large optical thickness or both conditions together are mainly 
responsible for disagreement with exact radiative transfer 
theory. It is shown here that acute single scattering aniso- 
tropy is the prime cause in inaccuracy in the two-flux model. 
Although the combinatton of large optical thickness with 
strong forward scattermg is the worst case, for quasi-isotropic 
phase functions, the predictrons of the two-flux model agree 
quite well with exact theory even at large optical depths (T() - 
100). In order to obtain accurate results from fundamental 
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properties (without adjustable constants) when scattering is 
acutely anisotropic, it is necessary to resort to either exact 
numerical methods or one of the more complicated appro- 
ximate models (three-flux, six-flux, etc.). 
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NOMENCLATURE 

heat transfer coefficient: 
rod radius ; 
radial coordinate ; 
maximum ablation radius, equation (12); 
rod resistivity ; 
axial coordinate ; 
rod heat capacity ; 
current ; 
maximum rod current, equation (11); 
energy flux ; 
rod thermal conductivity ; 
temperature ; 
facial temperature ; 
external temperature ; 
sublimation temperature; 
asymptotic rod temperature; 

u, rod speed ; 
US, maximum rod velocity, equation (10); 

V, potential drop ; 
V Xl potential for constant rod temperature 

Greek symbols 

A, latent heat of vaporisation ; 
P. non-ablating inverse distance; 
v, ablating inverse distance ; 
P9 rod density ; 
44 angular coordinate. 

INTRODUCTION 

CONSIDER a semi-infinite cylindrical rod of radius r lying 
along the positive z axis of a cylindrical coordinate system (r’, 
4, z). Ifa uniform distribution ofcurrent of I A enters the rod 


