Int. J. Heat Muss Transfer.
Printed in Great Britain

Vol. 25, No. 12, pp. 1905-1907, 1982

0017-9310/82/121905-03 $03.00/0
© 1982 Pergamon Press Ltd.

SHORTER COMMUNICATIONS

EXAMINATION OF THE TWO-FLUX MODEL FOR RADIATIVE
TRANSFER IN PARTICULAR SYSTEMS

M. Q. Briwstir and C. L. TN

Department of Mechanical Engineering, University of California,
Berkeley, CA 94720, US.A.

(Received 2 November 1981 and in final form 10 March 1982)

INTRODUCTION

AN AccrraTE model of the radiative transfer process, includ-
ing scattering and absorption, is essential to the calculation of
radiative heat transfer in many engineering systems. To
bridge the gap between the mathematical complexity of exact
radiative transfer theory [1] and the need for concise
engineering formulas, the two-flux model was developed
[2, 3] and has received widespread attention. However,
one important consideration has been largely overlooked,
namely, the problem of relating the two-flux parameters to
fundamental optical properties of the constituent particles,
without using any adjustable or empirically-derived
constants.

After its initial development [2, 3] and subsequent exten-
sion to absorbing-emitting media [4], the two-flux model
has further applied to scattering media through the simple,
but often unrealistic, assumption of isotropic scattering
[5-7]. To account for anisotropic scattering, a variation of
the two-flux model, which utilizes two-point Gaussian
quadrature [ 1] was introduced [8.,9]. Anisotropic scattering
was also considered in several earlier experimental studies
[10-12].

Daniel et al. [ 13] have compared the predictions of the two-
flux model with results of exact theory for radiation in
shallow ponds and concluded that, at least in that situation,
the two-flux model was unsuitable. The main disadvantage of
the two-flux model, it was noted, is its lack of ability to
represent the stepchange of refractive index at the air-water
interface, which gives rise to a rather pronounced anisotropic
distribution of intensity due to total internal reflection of rays
past the critical angle. Since not all engineering systems
exhibit boundaries of this kind, the utility of the two-flux
model has by no means been discredited in general. It is also
important to note that the conclusions in ref. [13] were based
on local volumetric absorption values rather than global
transmittance or reflectance values, which tend to have more
significance for heat transfer applications.

More recently, Tong and Tien [14] have attempted to use
only basic constituent properties and the electromagnetic
scattering theory to predict the two-flux parameters, includ-
ing the two-flux scattering and absorption coefficients as well
as the back-scatter fraction, for thermal radiation in fibrous
insulation. However, the expression for the back-scatter
fraction was taken from a frequently-encountered alternative
development of the two-flux model {15}, which does not
relate the back-scatter fraction to the single scattering phase
function in a manner consistent with the semi-isotropic
assumption of the original two-flux model. In addition to the
two-flux model, the linear anisotropic model of Dayan and
Tien [16] offers another approximate solution of the com-
plete transfer problem. Tong and Tien [17] have compared
calculations of the linear anisotropic model with those of the
two-flux model and concluded that although intermediate
parameters may sometimes vary appreciably between the
two, the total predicted heat flux is usually very nearly the
same for both cases.

In this study, an attempt is made to assess the predictive
capability of the two-flux model without relying on any
empirical or adjustable constants. Predictions of the two-flux
model are compared with those of exact radiative transfer
theory to determine the influence of optical depth and particle
size parameter on the accuracy of the two-flux model.

ANALYSIS

The traditional two-flux model, based on the assumption of
serni-isotropic intensity distribution, is obtained by integrat-
ing the complete transfer equation for azimuthally symmetric
radiation in a 1-dim., plane-parallel slab [1],
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For the nomenclature,  is the directional cosine with respect
to coordinate z perpendicular to the slab, I the radiation
intensity, ¢ the scattering coefficient, ¢ the absorption
coefficient, and p the scattering phase function. The super-
scripts + and — refer to forward (¢ > 0) and backward (1 <
0) directions, respectively. The bar quantities denote hemi-
spherically integrated values, in accordance with the two-flux
model.

The two-flux scattering and absorption coefficients can be
expressed as

¢ =2Bg = 3BQ.f,/d: d = 2a = 3Q,f./d ()

where Q, and Q, are the single particle scattering and
absorption efficiencies, d is the particle diameter, and f,
represents the particle volume fraction. The third parameter
of the two-flux model, the back-scatter fraction B is formally
defined as
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where the phase function for the 1-dim. plane-parallel slab is

related to single-particle scattering phase function p(0) [1]

as:
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with 0 being the angle between the incidence and the
scattering directions for the spherical particle. Equation (5)
was evaluated by numerical integration [18] of the Mie
scattering solution as a function of the size parameter, x =
nd/4, with 4 being the wavelength. Because of the large values
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Fia. 1. Two-flux predictions vs optical depth for n = 1.21 and
my = 1.0:(a) x = 1.0;(b) x = 50.

of x covered, it was not particularly convenient in this case to
utilize a Legendre polynomial expansion for p(#) with exact
Gaussian quadrature as is customarily done with systems of
smaller’ particles (x ~ 1) which have quasi-isotropic phase
functions. To do so and still cover a broad range of values for
x would result in a prohibitively large number of terms in the
expansions for p(f). Naturally the numerical integration was
verified to make certain that numerical errors did not
inadvertantly lead to violation of conservation of energy.

The form of the two-flux equations appearing in equations
(2) and (3) is suitable for a slab with diffuse incidence. Since
the calculations presented here were performed in con-
junction with an experimental study [ 18, 19] which employed
collimated incidence and reflecting boundaries, the two-flux
equations were recast in terms of the scattered component of
intensity with the collimated unscattered component appear-
ing as a source term in the equations [1]. The solution of the
resulting simultaneous equations is straightforward. For
exact results the method of discrete ordinates was applied to
solve the transfer equation. A complete discussion of this
method can be found elsewhere [18, 20].

RESULTS AND DISCUSSION

It has been suggested that the two-flux model is invalid
when the single scattering phase function is strongly aniso-
tropic [13]. It has also been suggested [21] that the two-flux
equations need to be multiplied by a constant 2/\/3 in order
to agree with the optically thick diffusion approximation, i.e.
7, » 1 where 1, = (¢ + ) L and L is the slab thickness. To
characterize the influence of the optical depth <, relative to
that of the phase function on the reliability of the two-flux
model, comparative calculations were made while systemati-
cally varying the values of t, and x. Figures 1 and 2
demonstrate these results.

In Fig. 1{a), 1 1s varied from 0.1 to 100 while v is fixed at a
vafue of one. The phase function is rather moderate (B = 0.43)
and the two-flux results are in error by at most 10%;, over the
entire range of 7,,. In Fig. 1(b), however, for the same region of
7, but for x = 50, the slab reflectance is over-predicted by as
much as 40%, (even at smaller 1,) and transmittance is under-
predicted by approx. 30--50%; for 7, = 2.0. It should be noted
that the main difference between these two cases is that for
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Fic. 2. Two-flux predictions vs size parameter for n = 1.21
and o, = 1.0:(a) r, = 1.0:(b) 7, = 10.0.

x = 50, the scattering becomes very strong in the forward
direction (B = 0.14).

On the other hand, Fig. 2 shows transmittance and
reflectance plotted as a function of x, with ,, as a parameter.
In Fig. 2(a), 1, = 1.0and in Fig. 2(b). 7, = 10.0. In both cases,
now, it is evident that as x increases beyond the value of one,
the accuracy of the two-flux model diminishes substantially.
The significance of large values of x is that B decreases
markedly for x greater than one.

The dips in the values of R near x = 10 are a result of the
fact that as x — + the strong forward spike in the phase
function which eventually accounts for the Fresnel difiraction
pattern must be removed from consideration as scattered
energy in order for the method of discrete ordinates to predict
accurate resuits for large values of x. For x > 10, the forward
scattering spike was removed from the phase function,
corresponding to the limit @, - 1 asx — ». For x < 10, the
usual method was followed with both the numerical in-
tegration of p(#) and the Legendre polynomial techniques
producing exactly the same results. This means, of course,
that there is uncertainty in the accuracy of even the method of
discrete ordinates in the transition region between the Mie
range (v ~ 1) and the geometric limit (v — ¥ ) and this
problem is now being considered.

SUMMARY

Predictions of radiative transfer using the two-flux model
have been compared with those of exact theory. No adjust-
able coefficients have been employed and thus, the predictive
capability of the two-flux model using only fundamental
properties of the system has been examined. Although similar
studies have been conducted in the past. it has never been
made clear whether acute anisotropic single scattering or
large optical thickness or both conditions together are mainly
responsible for disagreement with exact radiative transfer
theory. It is shown here that acute single scattering aniso-
tropy is the prime cause in inaccuracy in the two-flux model.
Although the combination of large optical thickness with
strong forward scattering is the worst case, for quasi-isotropic
phase functions, the predictions of the two-flux model agree
quite well with exact theory even at large optical depths (7, ~
100). In order to obtain accurate results from fundamental
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operties (without adjustable constants) when scattering is

acutely anisotropic, it is necessary to resort to either exact
numerical methods or one of the more complicated appro-
ximate models (three-flux, six-flux, etc.).
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NOMENCLATURE

h, heat transfer coefficient;

r, rod radius;

r, radial coordinate;

re maximum ablation radius, equation (12);

s, rod resistivity ;

z, axial coordinate ;

C, rod heat capacity ;

1, current;

I, maximum rod current, equation (11);
energy flux;

) rod thermal conductivity;

temperature ;

facial temperature ;

external temperature ;
sublimation temperature;
asymptotic rod temperature;
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U, rod speed;

U, maximum rod velocity, equation (10);
v, potential drop;

V., potential for constant rod temperature.

Greek symbols

A, latent heat of vaporisation;
U, non-ablating inverse distance ;
v, ablating inverse distance;

I rod density ;

®, angular coordinate.

INTRODUCTION

CONSIDER a semi-infinite cylindrical rod of radius r lying
along the positive z axis of a cylindrical coordinate system (7',
¢, z). If a uniform distribution of current of I A enters the rod



